Modern Physics Seminar(4)

上周调休,讲座又停了一周。这周开始等离子物理专题,只讲了周二一次,周四主讲人因急事又鸽了。


磁约束聚变物理简介


首先介绍了等离子体的特性,是在固态、液态和气态以外的第四大物质状态。

具有电荷的自由性、与电磁场不可分割的集体效应的特点,常用的研究方法有热力学与统计力学、电磁场理论和电动力学,以及流体力学的方法。

气体在高温或强电磁场下,会变为等离子体。提高温度是产生等离子体的途径。以某一温度划分,如10000°C(对应1eV)可以将等离子体划分为高温等离子和低温等离子体。其中低温等离子体又可以划分为冷等离子体(非热平衡)和热等离子体(热平衡)。

简单回顾了等离子物理发展过程中的重要事件。

  • 1923年,Debye 发现等离子体屏蔽。
  • 1928年,Langmuir发现等离子体震荡。
  • 1929年,首次提出Plasma。
  • 1985年,提出“国际热核聚变实验反应堆”(International Thermonuclear Experimental Reactor,ITER)。

利用核能主要有两种方式:

  1. 中子轰击U235,链式反应;
    2。 氘氚反应,轻核聚变。使用聚变产生的中子轰击Li,实现氚增殖,自加热。

理论上由于库仑势垒,至少需要0.48MeV能量,但由于隧道效应,并不需要那么高的能量。

简单的环形磁场并不能约束等离子体,为了消除径向漂移的损失,需要环向和角向磁场,形成螺旋形磁场,称之为螺旋变换。

典型的装置有:

  1. 托卡马克;
  2. 仿星器。

其中托卡马克的数学依据是由Poincaré提出的:偶数维单位球上的连续而又处处不为零的切向量场是不存在的(毛球定理)。

产生巨变反应的要求是:温度(T),密度(粒子数n)和约束性质(维持高温和粒子数,能量约束时间TE),聚变三重积,点火时间:n·T·TE。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注